首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   4篇
  国内免费   10篇
综合类   1篇
化学工业   36篇
建筑科学   1篇
能源动力   6篇
无线电   60篇
一般工业技术   19篇
自动化技术   3篇
  2023年   39篇
  2022年   4篇
  2021年   7篇
  2020年   8篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   18篇
  2015年   3篇
  2014年   4篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
针对薄膜型锑化铟霍尔元件芯片性能测试,设计了一套霍尔元件芯片测试系统。系统主要由手动探针台、显微镜、探针卡、外加磁场、PLC以及测试软件组成,可以进行霍尔元件芯片的输入和输出电阻、不平衡电压以及霍尔电压的测试。测试系统稳定性好,重复度高,测试误差较小。手动探针台操作简单,测试方便,灵活性强,可分别测试4英寸硅片和3英寸铁氧体衬底制备的薄膜型锑化铟霍尔元件芯片,以较低成本满足了霍尔元件芯片研发过程中芯片测试的需求。  相似文献   
2.
The autonomic nervous system maintains homeostasis in organisms through complex neural pathways and responds adaptively to changes in the external and internal environment. The fabrication of an artificial autonomic nervous system is reported that replicates combined effects of sympathetic and parasympathetic nerves on cardiac activity and pupillary control, to mimic the regulation of autonomic nervous system to external changes. The artificial autonomic nerve-controlled pupil contraction and relaxation, modulating the rate of heartbeats for normal cardiac rhythm and arrhythmia as reflected by blink rates of a signal indicator. These functions are switched by using a parallel-channeled synaptic transistor with a special n-i-p heterostructure that has a 2D h-BN insulator in the middle to provide barrier against ion injection into the 2D MoS2 bottom n-channel and enable short-term plasticity as induced by acetylcholine, and the electrochemical doping reaction occurred at the P3HT nanowire p-channels on top to enable relatively long-term plasticity as induced by noradrenaline. Low-energy consumption down to femtojoule and an ultrahigh paired-pulse facilitation index up to ≈455% are demonstrated. An artificial neural network based on device characteristics achieves a high recognition accuracy for electrocardiogram patterns. This study extends insights into artificial nerves-inspired biological signal processing and recognition.  相似文献   
3.
4.
The phase segregation in P3HT:PCBM blend films has been investigated from an experimental and theoretical viewpoint. Optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray diffraction show that thermal annealing of P3HT:PCBM blend films leads to the formation of PCBM aggregates. These aggregates are composed of dense randomly packed ∼50 nm PCBM crystallites with an overall aggregate density of ∼0.85 g cm−3. By applying the critical radius of nucleation for PCBM and the Stokes-Einstein equation for mobility of PCBM in a P3HT matrix, a model is developed which explains the formation of both crystallites and aggregates.  相似文献   
5.
Although photocells are commonly characterized under AM1.5G 100 mW cm−2 (1 sun) illumination, their performance under low light illumination is also important, because photocells are frequently used for indoor applications. In this study, polymer photocells based on a bulk heterojunction composite consisting of a low energy gap polymer PTB7 and unmodified C70 prepared with a halogen-free solvent 1,2,4-trimethylbenzene have been characterized under the illumination of 1 sun or below. A typical photocell with the power conversion efficiency (PCE) of 4% at 1 sun shows the PCE of approximately 7% at 10−3 sun, which seems to fit for some indoor applications such as a permanent power source for a wireless sensor node. The sublinear dependence of short-circuit photocurrent on light intensity as well as the increase of fill-factor under low light illumination yields the increased efficiency under low light illumination. An analysis employing a one-diode equivalent circuit model suggests that the increased parallel resistance as well as the decreased saturation current of the diode under low light illumination accounts for the latter feature. It is also pointed out that the parallel resistance and/or the saturation current under dark strongly influence the PCE of a photocell under low light illumination. In addition, the dependence of the device performance on the light intensity is found to be useful for analyzing the effects of the thermal treatment and the PFN interlayer at cathode.  相似文献   
6.
《Ceramics International》2023,49(10):15387-15394
The dewaxing process is used to remove an organic binder from the ceramic green bodies before sintering, which occasionally generates cracks. The crack formation behavior depends on various factors including softening and decomposition of the organic binder, generation of gases, and strength degradation of the green body thereby. Herein, this correlation was investigated to elucidate the crack formation behavior during the dewaxing process using two types of Al2O3 green bodies; one is added with polyvinyl butyral (PVB) and stearic acid (SA) and the other is with paraffin. The internal structures of Al2O3 green bodies during dewaxing were observed using optical coherence tomography (OCT), and the generated gases were analyzed simultaneously using a thermogravimetric (TG) analyzer and Fourier transform infrared (FTIR) spectroscopy (TG-FTIR). The mechanical properties of the green bodies were investigated at RT–600 °C using a thermomechanical analyzer (TMA). The weight change occurred in both the green bodies with formation of gases depending on the type of the binder. In the OCT studies, cracks were observed with substantial deformation in the PVB/SA-added green body during the dewaxing, whereas no cracks were seen in the paraffin-added one. The TMA investigation showed that the paraffin-added sample possessed higher strength and better structural stability than the PVB/SA-added one throughout the dewaxing, leading to the crack-free green body of the former. Therefore, the crack-initiation and deformation behaviors of the green bodies were significantly affected by the type of the binder used. The combination of the in-situ observations using the combined OCT-TG-FTIR system and the mechanical properties measurement using TMA was found to be effective in verifying the structural stability of the green bodies during the dewaxing.  相似文献   
7.
《Ceramics International》2023,49(10):15413-15421
In this work, Yb3Al5O12 (YbAG) garnet, as a new material for environment barrier coating (EBC) application, was synthesized and prepared by atmospheric plasma spraying (APS). The phases and microstructures of the coatings were characterized by XRD, EDS and SEM, respectively. The thermal stability was measured by TG-DSC. The mechanical and thermal-physical properties, including Vickers hardness (Hv), fracture toughness (KIC), Young's modulus (E), thermal conductivity (κ) and coefficient of thermal expansion (CTE) were also measured. The results showed that the as-sprayed coating was mainly composed of crystalline Yb3Al5O12 and amorphous phase which crystallized at around 917 °C. Moreover, it has a hardness of 6.81 ± 0.23 GPa, fracture toughness of 1.61 ± 0.18 MPa m1/2, as well as low thermal conductivity (0.82–1.37 W/m·K from RT-1000 °C) and an average coefficient of thermal expansion (CTE) (∼6.3 × 10−6 K−1 from RT to 660 °C). In addition, the thermal shock and water-vapor corrosion behaviors of the Yb3Al5O12-EBC systems on the SiCf/SiC substrates were investigated and their failure mechanisms were analyzed in details. The Yb3Al5O12 coating has an average thermal shock lifetime of 72 ± 10 cycles as well as an excellent resistance to steam. These combined properties indicated that the Yb3Al5O12 coating might be a potential EBC material. Both the thermal shock failure and the steam recession of the Yb3Al5O12-EBC systems are primarily associated with the CTE mismatch stress.  相似文献   
8.
《Ceramics International》2023,49(10):15422-15433
This paper developed a lightweight aggregate geopolymer concrete (LAGC) with shale ceramsite. 18 groups of LAGC specimens with 3 sand ratios (30%, 40% and 50%) and 6 aggregate contents (10%, 20%, 30%, 40%, 50% and 60%) were prepared. A series of static tests (dry density test and uniaxial compression test) and dynamic tests (ultrasonic pulse velocity test) were performed to achieve the dry density, compression strength and P-wave velocity. The effects of sand ratio and aggregate content on the dry density, compression strength and P-wave velocity were discussed. Two optimal mix proportions for the LAGC were proposed. The results show that the dry density and P-wave velocity increase as sand ratio increases. The compressive strength increases then decreases as sand ratio increases. In addition, the dry density and compressive strength decrease as aggregate content increases. The P-wave velocity increases as aggregate content increases. The LAGC with the sand ratio of 30% and aggregate contents of 30% reaches the dry density of 1378.0 kg/m3 and compressive strength of 18.5 MPa. The LAGC with the sand ratio of 30% and aggregate contents of 40% reaches the dry density of 1348.0 kg/m3 and compressive strength of 16.8 MPa. Both of the proportions satisfied the engineering requirements, which are recommended for the potential application in the construction.  相似文献   
9.
《Ceramics International》2023,49(10):15588-15598
Biphasic calcium phosphate (BCP) is a highly study bone defect repair material with adjustable degradation, perfect osteoconduction and good osteoinduction. As one of the essential trace elements, magnesium (Mg) possesses the abilities of pro-osteogenesis and pro-angiogenesis. Therefore, Mg doping may further expand the application of BCP in bone defect repair, but few studies focus on promoting the osteogenesis and angiogenesis of BCP simultaneously by Mg doping, and the optimal doping amount of Mg remains to be explored. In this study, the physicochemical and biological properties of BCP scaffold affected by Mg doping were systematically study. Results showed that Mg doping enhanced the sintering of BCP scaffold, resulting in the decrease of degradation rate at the initial soaking period. However, the introduction of Mg damaged the lattice stability of BCP, leading to the increase of BCP degradation rate at the later soaking period. BCP scaffolds with Mg doping content ≥3 mol.% could achieve a long-term sustained release of Mg. The ion microenvironment created by Mg-doped scaffolds was simultaneously conducive to the osteogenic differentiation of stem cells and the enhanced angiogenic activity of endothelial cells. The scaffold doped with 5 mol.% of Mg (Mg5–S) showed the highest efficiency in promoting osteogenic differentiation. Mg-doped BCP scaffolds with a doping content ≥3 mol.%, especially Mg5–S, significantly improved the proliferation and angiogenic differentiation of endothelial cells. Based on these, we believe that the optimal doping content of Mg in BCP is 5 mol.%, and Mg5–S has great application potential in bone defect repair.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号